Table of Contents

- **Introduction** ... page 1
- **Test Your Earthquake IQ.** .. page 2
- **Earthquake Hazards & Risks** .. page 3
- **San Andreas: The Next Big One?** .. page 14
- **7 Steps to Earthquake Resiliency** .. page 17
- **Earthquake Early Warnings & Mass Notification** ... page 17
- **Additional Resources** ... page 17
- **About Regroup Mass Notification** ... page 19
Introduction

An earthquake is caused by a sudden slip on a fault and while the tectonic plates are always slowly moving, they get stuck at their edges due to friction.

When the stress on the edge overcomes the friction, it causes an earthquake that releases energy in waves that travel through the earth’s crust, which causes the shaking we feel during a quake.

Earthquakes threaten roughly half of the U.S. population, according to a new study presented in April 2015 at the annual meeting of the Seismological Society of America. More than 143 million Americans live in earthquake-prone regions in the lower 48 states and if you include Alaska, Hawaii and Puerto Rico, that number rises to about 150 million U.S. citizens (Live Science, 2015).

While in the past earthquakes were considered by many to be a “West Coast” problem, nothing could be further from the truth. Over the past few years, the number of earthquakes within the central and eastern United States has increased dramatically. Between the years 1973–2008, there was an average of 21 earthquakes per year of magnitude three and larger in the Central and Eastern United States. This rate jumped to an average of 99 M3+ earthquakes per year in 2009–2013, and the rate continues to rise. In 2014 alone, there were 659 M3 and larger earthquakes.

Every community depends on their local businesses to reopen quickly following a disaster and for this to happen, organizations must ensure their employees and stakeholders are prepared — both at home and at work. This Earthquake Preparedness Guide will provide you with valuable information and resources that can help prepare you and your organization for earthquakes.

Earthquake Terminology:

Liquefaction: Soil liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid loading. Liquefaction occurs in saturated soils; that is, soils in which the space between individual particles is completely filled with water.

Surface Rupture: Surface rupture is an offset of the ground surface when fault rupture extends to the Earth’s surface. Any structure built across the fault is at risk of being torn apart as the two sides of the fault slip past each other.

What Can Happen

The increase in seismicity has been found to coincide with the injection of wastewater in deep disposal wells in several locations, including Colorado, Texas, Arkansas, Oklahoma and Ohio. Hydraulic fracturing — commonly known as “fracking” — does not appear to be linked to the increased rate of magnitude 3 and larger earthquakes (USGS).

Did You Know?

Unlike California, Washington and Oregon have no statutes regulating development on faults with surface rupture potential (Pacific Northwest Seismic Network).
Seiche: A seiche (pronounced: saysh) is a standing wave in an enclosed or partially enclosed body of water. Triggered by earthquake waves, seiches and seiche-related phenomena have been observed on lakes, reservoirs, swimming pools, bays, harbors and seas.

Tsunami: A tsunami (pronounced tsoo-nah-mee) is a wave train, or series of waves, generated in a body of water by a disturbance that moves the whole water column. Tsunamis can impact coastlines, causing devastating property damage and loss of life.

Slip: Slip is the relative displacement of formerly adjacent points on opposite sides of a fault, measured on the fault surface.

Fault: A fault is a fracture along which the blocks of crust on either side have moved relative to one another parallel to the fracture.

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Feels Like…</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>0.6 – 20 kg of dynamite</td>
<td>We cannot feel these.</td>
</tr>
<tr>
<td>2</td>
<td>600 kg of dynamite</td>
<td>Smallest earthquake that can normally be felt by humans.</td>
</tr>
<tr>
<td>3</td>
<td>20,000 kg of dynamite</td>
<td>Felt mostly just near the epicenter.</td>
</tr>
<tr>
<td>4</td>
<td>60,000 kg of dynamite</td>
<td>Causes damage near epicenter.</td>
</tr>
<tr>
<td>5</td>
<td>20,000,000 kg of dynamite</td>
<td>Causes damage to weak buildings near epicenter.</td>
</tr>
<tr>
<td>6</td>
<td>60,000,000 kg of dynamite</td>
<td>Can cause great damage around epicenter.</td>
</tr>
<tr>
<td>7</td>
<td>20 billion kg of dynamite</td>
<td>Serious damage. Enough energy to head NYC for 1 year.</td>
</tr>
<tr>
<td>8</td>
<td>60 billion kg of dynamite</td>
<td>Causes major destruction. Deadly. Leveled San Francisco’s in 1906.</td>
</tr>
<tr>
<td>9</td>
<td>20 trillion kg of dynamite</td>
<td>Extremely rare, but would cause immense damage.</td>
</tr>
</tbody>
</table>
Test Your Earthquake IQ

True or False: California has the most earthquakes in the United States

Partially True: While California does have the most damaging earthquakes, including the M6.0 that hit near Napa in August 2014, Alaska registers the most earthquakes in a given year. Interestingly, California placed second until 2014, when a sudden increase in seismicity in Oklahoma pushed it well past California in terms of M3.0 and greater earthquakes.

True or False: It’s only a matter of time before California falls into the ocean.

False: It’s absolutely impossible for California to break off and fall into the Pacific.

The ocean itself is land, albeit at a somewhat lower elevation with water above it. Southwestern California is moving horizontally northward towards Alaska, as it slides past Central and Eastern California, with the dividing point being the San Andreas fault system, the boundary between the Pacific Plate and North American Plate.

True or False: The ground can open up during an earthquake and swallow you whole.

False: No earthquake disaster movie would be complete if there wasn’t a scene where the ground opens up to swallow people and buildings. In truth the ground on both sides of the fault don’t pull apart, they slide past each other.

If the fault could open, there would be no friction. Without friction, there would be no earthquake. While shallow crevasses can form during earthquake-induced landslides, lateral spreads, or other types of ground failures, faults do not gape open during an earthquake.

Fact

At the rate the Pacific Plate is moving to the northwest with respect to the North American Plate — approximately 46 millimeters (two inches) per year, the rate your fingernails grow — in about 15 million years, Los Angeles and San Francisco will be next-door neighbors and in an additional 70 million years, Los Angeles residents will find themselves with an Alaska zip code.

Fact

Even though the San Andreas cannot trigger a big tsunami, earthquakes on other faults off-shore California as well as underwater landslides triggered by strong shaking can create local tsunamis some of which may be locally damaging.
True or False: An earthquake on the San Andreas fault can trigger a large tsunami

False: The San Andreas fault cannot create big tsunamis like Sumatra in 2004 or Japan in 2011. Those earthquakes happened on subduction zone faults, on which fault slip caused vertical uplift of the sea floor.

While a part of the San Andreas fault near and north of San Francisco is offshore, the motion is mostly horizontal so it will not cause large vertical motions of the ocean floor that would generate a tsunami.

True or False: Earthquakes are more likely to occur early in the morning

False: People who subscribe to this theory believe that cooler morning temperatures cause the ground to contract, thus resulting in tremors. Scientists have been keeping records of earthquakes for the past hundred years and have found that there is no correlation that earthquakes happen early in the morning.

True or False: People can cause earthquakes

Partially True: Earthquakes caused by human activity have been documented in the United States, Japan and Canada.

The cause was injection of fluids into deep wells for waste disposal and secondary recovery of oil and the filling of large reservoirs for water supplies.

Deep mining can cause small to moderate quakes and nuclear testing has caused small earthquakes in the immediate area surrounding the test site, but other human activities have not been proven to trigger subsequent earthquakes.

Fact

In 2014, there were 585 M3 and greater earthquakes in Oklahoma and about 200 in California. As of April 2015, Oklahoma with 260 events is still well ahead of California at 29 events. Florida and North Dakota have the fewest earthquakes each year.
True or False: Animals can predict earthquakes

False: Even though there have been documented cases of unusual animal behavior prior to an earthquake, a reproducible connection between a specific behavior and the occurrence of an earthquake has not been made.

Due to their finely tuned senses, animals can often feel an earthquake at its earliest stages (and before humans), which feeds the myth that animals knew the earthquake was coming. However, animals change their behavior for many reasons.

In Case of an Earthquake

True or False: Head for the doorway during an earthquake

False: This myth was born back in the day when most homes were made of adobe and the doorframe may have been the only thing still standing in the aftermath of an earthquake. Consequently, it was believed to be the place to find safety. Modern homes have doorways that are no stronger than any other part of the home and usually have doors that will be slamming open and shut.

The minute you feel shaking, you should immediately drop to the ground before the energy throws you off your feet. You then need to crawl and get underneath something that will protect you from falling objects and hold on.
Primary earthquake hazards are:

- ground shaking
- landslides
- liquefaction
- surface rupture

Earthquake risk refers to what we stand to lose when the hazard occurs, such as buildings that are threatened. Risk can generally be measured in dollars or fatalities.

The M6.7 Northridge Earthquake of 1994 produced the strongest ground motions ever instrumentally recorded in an urban setting in North America and caused widespread damage amounting to between 13 and 20 billion U.S. dollars and 60 fatalities.

Sections of major freeways collapsed, parking structures and office buildings collapsed, and numerous apartment buildings suffered irreparable damage.

TOP TEN MOST COSTLY U.S. EARTHQUAKES BY INFLATION-ADJUSTED INSURED LOSSES ($ millions)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Date</th>
<th>Location</th>
<th>Overall losses when occurred</th>
<th>Insured loss ($)</th>
<th>In 2014 dollars ($)</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 17, 1994</td>
<td>California: Northridge, Los Angeles, San Fernando Valley, Ventura, Orange</td>
<td>$44,000</td>
<td>$15,380</td>
<td>$24,440</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>Apr. 18, 1990</td>
<td>California: San Francisco, Santa Rosa, San Jose</td>
<td>524</td>
<td>180</td>
<td>4,390 (4)</td>
<td>3,000</td>
</tr>
<tr>
<td>3</td>
<td>Oct. 17, 1989</td>
<td>California: Loma Prieta, Santa Cruz, San Francisco, Oakland, Berkeley, Silicon Valley</td>
<td>10,000</td>
<td>560</td>
<td>1,830</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>Feb. 28, 2001</td>
<td>Washington: Olympia, Seattle, Tacoma; Oregon</td>
<td>2,000</td>
<td>300</td>
<td>400</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Feb. 9, 1971</td>
<td>California: San Fernando Valley, Los Angeles</td>
<td>553</td>
<td>35</td>
<td>200</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>Oct. 1, 1987</td>
<td>California: Los Angeles, Whittier</td>
<td>340</td>
<td>15</td>
<td>160</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Aug. 24, 2014</td>
<td>California: Napa, Solano, Sonoma, American Canyon</td>
<td>700</td>
<td>150</td>
<td>190</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Apr. 4, 2010</td>
<td>California: San Diego, Calexico, El Centro, Los Angeles, Imperial, Arizona: Phoenix, Yuma</td>
<td>150</td>
<td>100</td>
<td>110</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>Sep. 3, 2009</td>
<td>California: Napa</td>
<td>80</td>
<td>50</td>
<td>70</td>
<td>NA</td>
</tr>
</tbody>
</table>
SAN ANDREAS: THE NEXT BIG ONE?

Running almost the entire length of California, the San Andreas fault is probably the most well-known fault in the United States, especially after the Hollywood-hype of a 2015 big-budget disaster movie of the same name.

Running almost the entire length of California, the San Andreas fault is probably the most well-known fault in the United States, especially after the Hollywood-hype of a 2015 big-budget disaster movie of the same name.

The probability for an earthquake on the southern part of the fault is more than double that of the northern end.

If only the southern part of the Cascadia Subduction Zone gives way, the odds of the “big” (between 8.0 and 8.6) Cascadia earthquake happening in the next fifty years are roughly one in three. The odds of the “very big” one (between 8.7 and 9.2) from a full-margin rupture are roughly one in ten.

Scientists predict that when the next “very big” earthquake hits, the northwest edge of the continent — from California to Canada and the continental shelf to the Cascades — will drop by as much as six feet and rebound thirty to a hundred feet to the west. In the Pacific Northwest, the impact area will cover around one hundred and forty thousand square miles, including Seattle, Tacoma, Portland, Eugene, Salem (the capital city of Oregon), Olympia (the capital of Washington), along with some seven million residents.

FEMA projects that nearly thirteen thousand people will die in the Cascadia earthquake and tsunami. Another twenty-seven thousand will be injured, and the agency expects that it will need to provide shelter for a million displaced people, and food and water for another two and a half million (The New Yorker, 2015).

Fact

Every faultline has an upper limit to its potency, determined by its length and width, and by how far it can slip. For the San Andreas — one of the most extensively studied and best understood fault lines in the world — that upper limit is roughly an 8.2. That magnitude of an earthquake would be a powerful one, but because the Richter scale is logarithmic, it would be only six percent as strong as the 2011 event in Japan (The New Yorker, 2015).
7 Steps to Earthquake Safety & Resilient Organizations

Being prepared for the next earthquake can help your organization survive and recover. FEMA and Earthquake Country Alliance offer many basic recommendations that are designed to keep people safe, reduce potential damage and help organizations recover more quickly.

Step One: Identify & Begin Addressing Internal Earthquake Hazards

Identify the internal hazards to your organization that could interrupt your operations. Evaluate where your organization is vulnerable and then determine a course of action to minimize those risks. If you secure an object, it can be saved from earthquake damage or from hurting employees.

Examples of internal hazards include unbraced shelves located next to exits, filing cabinets not bolted to the floor or wall studs, heavy or breakable items on high shelves or bookcases and not backing up computer data and/or not storing backups off site.

Step Two: Create a Disaster Plan

Once you have identified the potential hazards and impacts to your organization, the next step is to create a Business Continuity Plan to assist with decision-making during a disaster like an earthquake.

Basic Plan Elements:

- The names and clearly defined roles of designated internal emergency response teams, including crisis communications and business continuity/disaster recovery
- Applicable state/local/federal regulations
- Available internal and external resources
- Site and building plans
- Evacuation procedures, including maps that show evacuation routes
- The functions in your operations that are critical for business survival and how you will continue to perform these functions in a disaster.
- Processes for assessing damage, along with the contactors, equipment and materials that would be needed following an earthquake
- An emergency notification system for warning employees about emergencies and communicating with them and local emergency management officials during a disaster
- Clearly defined procedures for communicating with management, employees, external stakeholders and the media during and following an event
- Considerations for the special needs of employees with disabilities and medical conditions
- Essential documents (e.g., emergency response and business continuity plans, employee data, payroll, customer data, legal documents) are stored on an off-site server that can be accessed remotely by multiple team members, from multiple locations

Be Prepared

Do you leverage a cloud-based Emergency Notification System that will empower you to communicate even during adverse conditions that disrupt local services?
Step Three: Prepare a Disaster Supplies Kit

At minimum, a 3-day supply should be kept on hand, including:
- First aid kits/medical supplies
- Food (canned, packaged, ready to eat)
- Water (enough for one gallon per person per day)
- Lighting (flashlight with extra batteries, lanterns, light sticks)
- Communications (portable AM/FM radio and extra batteries, portable TV)
- Tools (basic hand tools, e.g., hammers, screwdrivers, wrenches)
- Personal protective equipment (hard hats, gloves, dust masks)
- Tarps/plastic sheeting
- Food preparation (portable stoves/grills for outdoor use, can openers, mess supplies)
- Hygiene and sanitation supplies
- Additional supplies to meet the training level of your employees (e.g., first aid, Community Emergency Response Team (CERT), EMT)

Step Four: Identify your building’s potential weaknesses and fix them

The majority of businesses lease their space, so it’s essential to work with your owner and property manager on addressing any structural issues. If you do own the building, then take steps to strengthen those weaknesses. Measures taken now can help you keep your doors open — no access means no business.

Talk to the experts to learn what damage might be expected in a seismic event and to help you prioritize solutions. Ideally this will be done before you lease or purchase a facility.

Step Five: Protect yourself and employees during earthquake shaking

When at work and the earthquake starts shaking, the critical initial step for life safety is to: Drop underneath a sturdy desk or table, Cover your head and neck, Hold On to the furniture as it moves and Stay until the shaking stops. If there is no desk or table nearby, move to an internal wall, drop to the floor and cover your head and neck. Stay clear of objects that may fall, windows or anything else that may harm you.

Hazards In Your Safe Places

While there are many safe places to Drop, Cover, and Hold On, there are potential hazards that might keep you unsafe. Practicing with annual drills is a simple way to educate all employees on what to do and highlight issues that can be easily rectified such as:
- Boxes under desk
- Not enough space
- Near windows

Once the hazards are identified, the next step is to fix them immediately. When the ground starts shaking, it is too late.

Establish a Hub (Location or Person)

Depending on the scale of the earthquake or other disaster, it is important to establish a centralized location, or hub, to manage information on life safety and building & operations. This will help with key decision-making, tracking issues, documenting a progression of the disaster and lessons learned.

This central location, or emergency operations center, can help communicate status with employees such as whether it is safe to stay, where to relocate employees if not, when it is safe to leave, routes to evacuate and so forth.
STEP SIX: After an earthquake, check for injuries and damage

Life safety is the top priority after an earthquake or any disaster. Use trained personnel to find anyone injured and to survey your building for damage or other hazards. Then decide if it’s safe to stay.

Following an earthquake:
1. Address life safety
2. Address exterior building safety
3. Address internal building safety
4. Perform a more detailed building assessment
5. Establish a hub (location or person)

STEP SEVEN: When it’s safe to do so, continue to follow your disaster plan

Once you have addressed all life safety concerns, it’s time to begin recovery activities to resume business operations. Keep in mind some aspect of your business may never return to normal after a disaster and that to be truly resilient is to be flexible to recover in this changed environment.

Detailed Assessment: Based on what you found in your facilities inspection in Step Six, prioritize your findings according to what is most important and then begin to create an action plan. If necessary, conduct additional assessments and possibly bring in professionals such as structural engineers. In your action plan, show how you will address these issues based on their criticality to operations.

Communications: To maintain continuity of operations during a disaster, it’s critical to communicate frequently with employees, customers, vendors, stakeholders and key business partners. Leverage a cloud-based mass notification system that provides you with multiple communication channels, such as your website, cell and/or landline telephones and social media to ensure the lines of communication remain open during a disaster.

Full restoration of services and/or production: This is where you’ll need to work with your community and partners to reconnect, as well as to get help. Resources can be found at the local, state and national level, if you need it. Use this opportunity to strengthen existing relationships by keeping people in the communication loop and sharing available resources with them, especially if it could help your community.

Lesson Learned: To enhance preparedness and lessen future impacts, it’s important to create a list of the “Lessons Learned” while they’re fresh in your mind. This will help you refine your plan and implement any needed changes to operations.

You might not be able to stop earthquakes from happening, but there are steps that can be taken today to minimize loss of life and property.
Earthquake Early Warnings & Mass Notification

An earthquake early warning (EEW) system can provide anywhere from a few seconds to tens of seconds warning prior to ground shaking during an earthquake, depending on the distance to the epicenter. Earthquake early warning systems are currently operating in Mexico, Taiwan and Japan, but not in the United States.

In California, the California Integrated Seismic Network (CISN) is testing an early warning system, using its real-time operations.

The ShakeAlert EEW System has been developed for the West Coast within the existing operational environments of three regional seismic networks (Advanced National Seismic System, ANSS) in southern California (Southern California Seismic Network, SCSN), northern California (Northern California Seismic System, NCSS) and the Pacific Northwest (Pacific Northwest Seismic Network, PNSN).

There are three steps that are necessary in order to have a fully developed and tested system:

1. The development of the technology to provide warnings to the public
2. Education about the meaning of the warnings
3. Investment in the seismic infrastructure to improve the rapid detection of earthquakes

The estimated cost of a robust, fully operational EEW-capable CISN system in California is around an additional $80M over five years and a similar capability in the Pacific Northwest is estimated to cost $65M over five years.

Fact

In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

How will warnings be delivered?

“Every available technology will be used to insure that EEW messages reach as many people as possible as quickly as possible...EEW uses will open the door to many public/private partnerships as private companies develop innovative products and services to use and distribute EEW alerts.” (from ShakeAlert)
Earthquake Early Warnings can be used to reduce damage, costs and casualties in an earthquake, and uses range from the simple to the complex. Here are just a few examples of how EEW can reduce loss of life and promote resiliency before an earthquake hits:

<table>
<thead>
<tr>
<th>Transportation</th>
<th>Organizations</th>
<th>Utilities</th>
<th>Hospitals and Health Facilities</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Slow or stop trains</td>
<td>✓ Stop elevators at the nearest floor and open the doors</td>
<td>✓ Open and close critical valves in pipelines</td>
<td>✓ Halt surgeries, dental operations, laser procedures</td>
<td>✓ Alert first responders in the field to temporarily retreat to safe places</td>
</tr>
<tr>
<td>✓ Stop airport take-offs and landings</td>
<td>✓ Warn employees to move away from windows to interior areas</td>
<td>✓ Shut down systems</td>
<td>✓ Alert hospital staff to possible influx of casualties</td>
<td>✓ Trigger doors to open for emergency vehicles</td>
</tr>
<tr>
<td>✓ Close vulnerable bridges</td>
<td>✓ Alert specialized internal response teams</td>
<td>✓ Reroute power</td>
<td>✓ Trigger disaster response protocols</td>
<td>✓ Start generators</td>
</tr>
<tr>
<td>✓ Slow or stop traffic by turning all signals red, including freeway entrances</td>
<td>✓ Secure field personnel in safe positions</td>
<td>✓</td>
<td>✓ Warn school children to drop, cover and hold on</td>
<td>✓ Notify the public to prepare physically and psychologically for the impending shaking</td>
</tr>
</tbody>
</table>
Regroup: Leading the Industry in EEW Mass Notification Technology

With a reputation for being an international hub for entrepreneurship and innovation, it’s no surprise that San Francisco is considered one of the top most innovative tech hubs in the nation.

In 2014, Mayor Ed Lee launched the first-ever Entrepreneurship-in-Residence program (n/k/a Startup in Residence) — a four month collaboration that paired six civic tech startups with city departments to work on opportunities that were actual pain points and needs of state/local governments.

And for San Francisco, preparing for earthquakes is a top priority.

Regroup Mass Notification was selected from a field of over two hundred startups from around the world to work with the Department of Emergency Management to explore new ways to handle emergency mass messaging across multiple disparate platforms.

This collaboration resulted in the development of a prototype for what would be the first-ever automated Earthquake Warning Mass Notification System in the United States. Unveiled at the EIR Demo Day media event in July 2014, Regroup’s prototype would send text and voice messages to residents in advance of earthquakes hitting San Francisco. The system would be in the multiple languages required by SF City Ordinance — English, Spanish, Chinese and Tagalog. In addition to mass text and voice messages (cells/landlines), Regroup’s pilot system would trigger notifications to email, websites, social media, digital signage and other communication channels to provide city officials and residents with the rapid earthquake early warnings they need in order to take protective measures.

Regroup would integrate with federally funded California Integrated Seismic Network (CISN) ShakeAlert EEW, which currently provides notifications to a closed system via a desktop application.

With the monitoring from ShakeAlert and Regroup’s Mass Notification System, cities like San Francisco can be prepared for another Loma Prieta.

The development of a working EEW mass notification prototype is just one of many ways that Regroup Mass Notification leads the industry in the advancement of mass communication technology. And during a disaster, wouldn’t you want your partner in communications to be a leader and not a follower?
If you would like to learn more about our work on Earthquake Warning Mass Notifications, as well as our ability to integrate with other life-saving platforms such as IPAWS/NWS-NOAA, please sign up here call 917-746-6776 or email us at inquiries@regroup.com to schedule a consultation with one of our communication specialists.

“CCSF originally thought of Regroup as a disaster recovery/business continuity tool. What do we do if our primary mail system is unavailable? How do we get information to the department admins? Regroup also gives us the ability to reach out to both internal and external contacts, and additional modes of communication including text, voice, and social media. Upon further investigation and interdepartmental collaborations the ideal grew to cover a wider spectrum and became an everyday tool.”

Herman Brown
IS Director of Projects, Department of Technology
City & County of San Francisco

Additional Resources:

- FEMA Earthquake Safety Checklist (PDF)
- Earthquake Glossary
- Putting Down Roots in Earthquake Country & Related Resources
- ShakeAlert
- USGS

Next Steps

1) Now that you have read this guide, please share it with your colleagues and discuss the ways your organization would benefit from automating wildfire alerts and other emergency communications.

2) If you would like more information on how Regroup’s Emergency & Mass Notification System can enhance your Emergency Response and Business Continuity Plans, contact us for free consultation. This will enable you to see first-hand how your team can respond faster and more effectively during a time of crisis.

3) Subscribe to our Crisis Management Newsletter to receive information regarding new white papers and upcoming webinars related to best practices in emergency and mass notification.

To help you evaluate the preparedness level of your emergency communications plan, we would like to offer you a free consultation with one of our communications specialists. You will have the opportunity to evaluate your existing emergency communications protocols and discover ways you can further enhance communications during disruptive events like a wildfire. Register now and make sure your organization is ready for a wildfire disaster.

White Papers

- Hurricane Preparedness Guide
- The Power of Automated Messaging for Emergency Notifications & Business Continuity
- Ten Step Guide to Effective Crisis Communications
- 7 Best Practices in Emergency Notifications
- The Emergency Notification System Checklist

Webinars

- Severe Weather & Emergency Notifications - How to Prepare for 2015
- Extreme Weather: Best Practices in Preparation & Communication
ABOUT REGROUP MASS NOTIFICATION

Emergency Notifications
In the event of a crisis, Regroup enables agencies to rapidly send emergency notifications to all popular communication methods, as well as to PA systems, digital signage, alert beacons and more. Administrators can enhance their Emergency Response Plan by giving public safety departments access to send, receive and reply to messages using the systems two-way communication capability. Emergency messages can also be saved in advance containing text, audio, video and attached documents.

Day-to-Day Communications
You can effortlessly achieve ROI by utilizing Regroup’s platform to proactively communicate with multiple agencies, departments and area residents. Administrative costs will be reduced by having the ability to send thousands of messages per minute, drastically reducing time and manpower. An added benefit is that it will significantly increase the chances recipients receive messages about events, deadlines and updates due to the higher penetration rate obtained through multi-modal messaging.

Group Messaging
Unify agencies and departments by empowering them with the ability to send messages to mobile devices (text/voice), landlines, email, social media, forums and more. As Regroup allows administrators to create an unlimited amount of groups, as well as send unlimited messages, we boast the most cost-effective group messaging solution by offering a system that enables your community to stay informed and involved in programs and events without incurring extra fees.

Cost-Effective Communication Solutions for State & Local Governments
Clients choose us for the following reasons: Our system is robust yet easy to use, secure yet highly customizable, and because our 100% Software-as-a-Service system not only easily integrates into databases, but also saves you the time and hassle of software installation and server maintenance fees. Contact us today to test drive our platform yourself while on a customized demo tailored to fit your needs.

• Unlimited SMS Text/Voice Alerts/Emails
• User Friendly, One-Click Messaging
• Real-Time, Two-Way Communication
• We save clients money, on average 50%
• Easy Website and PA System Integration

• Unlimited Group Creation
• Unparalleled 24/7 Support
• Seamless Database Integration
• Secure, Redundant & Reliable Servers